Simple basis coordinates | Epsilon coordinates | Reflection w.r.t. root |
(-1, -2, -2, -2) | -e_{1}-e_{2} | \(s_{2}s_{1}s_{3}s_{2}s_{4}s_{3}s_{2}s_{1}s_{4}s_{3}s_{2}\) |
(-1, -1, -2, -2) | -e_{1}-e_{3} | \(s_{1}s_{3}s_{2}s_{4}s_{3}s_{2}s_{1}s_{4}s_{3}\) |
(0, -1, -2, -2) | -e_{2}-e_{3} | \(s_{3}s_{2}s_{4}s_{3}s_{2}s_{4}s_{3}\) |
(-1, -1, -1, -2) | -e_{1}-e_{4} | \(s_{1}s_{2}s_{4}s_{3}s_{2}s_{1}s_{4}\) |
(0, -1, -1, -2) | -e_{2}-e_{4} | \(s_{2}s_{4}s_{3}s_{2}s_{4}\) |
(-1, -1, -1, -1) | -e_{1} | \(s_{1}s_{2}s_{3}s_{4}s_{3}s_{2}s_{1}\) |
(0, 0, -1, -2) | -e_{3}-e_{4} | \(s_{4}s_{3}s_{4}\) |
(0, -1, -1, -1) | -e_{2} | \(s_{2}s_{3}s_{4}s_{3}s_{2}\) |
(-1, -1, -1, 0) | -e_{1}+e_{4} | \(s_{1}s_{2}s_{3}s_{2}s_{1}\) |
(0, 0, -1, -1) | -e_{3} | \(s_{3}s_{4}s_{3}\) |
(0, -1, -1, 0) | -e_{2}+e_{4} | \(s_{2}s_{3}s_{2}\) |
(-1, -1, 0, 0) | -e_{1}+e_{3} | \(s_{1}s_{2}s_{1}\) |
(0, 0, 0, -1) | -e_{4} | \(s_{4}\) |
(0, 0, -1, 0) | -e_{3}+e_{4} | \(s_{3}\) |
(0, -1, 0, 0) | -e_{2}+e_{3} | \(s_{2}\) |
(-1, 0, 0, 0) | -e_{1}+e_{2} | \(s_{1}\) |
(1, 0, 0, 0) | e_{1}-e_{2} | \(s_{1}\) |
(0, 1, 0, 0) | e_{2}-e_{3} | \(s_{2}\) |
(0, 0, 1, 0) | e_{3}-e_{4} | \(s_{3}\) |
(0, 0, 0, 1) | e_{4} | \(s_{4}\) |
(1, 1, 0, 0) | e_{1}-e_{3} | \(s_{1}s_{2}s_{1}\) |
(0, 1, 1, 0) | e_{2}-e_{4} | \(s_{2}s_{3}s_{2}\) |
(0, 0, 1, 1) | e_{3} | \(s_{3}s_{4}s_{3}\) |
(1, 1, 1, 0) | e_{1}-e_{4} | \(s_{1}s_{2}s_{3}s_{2}s_{1}\) |
(0, 1, 1, 1) | e_{2} | \(s_{2}s_{3}s_{4}s_{3}s_{2}\) |
(0, 0, 1, 2) | e_{3}+e_{4} | \(s_{4}s_{3}s_{4}\) |
(1, 1, 1, 1) | e_{1} | \(s_{1}s_{2}s_{3}s_{4}s_{3}s_{2}s_{1}\) |
(0, 1, 1, 2) | e_{2}+e_{4} | \(s_{2}s_{4}s_{3}s_{2}s_{4}\) |
(1, 1, 1, 2) | e_{1}+e_{4} | \(s_{1}s_{2}s_{4}s_{3}s_{2}s_{1}s_{4}\) |
(0, 1, 2, 2) | e_{2}+e_{3} | \(s_{3}s_{2}s_{4}s_{3}s_{2}s_{4}s_{3}\) |
(1, 1, 2, 2) | e_{1}+e_{3} | \(s_{1}s_{3}s_{2}s_{4}s_{3}s_{2}s_{1}s_{4}s_{3}\) |
(1, 2, 2, 2) | e_{1}+e_{2} | \(s_{2}s_{1}s_{3}s_{2}s_{4}s_{3}s_{2}s_{1}s_{4}s_{3}s_{2}\) |
roots simple coords | epsilon coordinates | [,] | g_{-16} | g_{-15} | g_{-14} | g_{-13} | g_{-12} | g_{-11} | g_{-10} | g_{-9} | g_{-8} | g_{-7} | g_{-6} | g_{-5} | g_{-4} | g_{-3} | g_{-2} | g_{-1} | h_{1} | h_{2} | h_{3} | h_{4} | g_{1} | g_{2} | g_{3} | g_{4} | g_{5} | g_{6} | g_{7} | g_{8} | g_{9} | g_{10} | g_{11} | g_{12} | g_{13} | g_{14} | g_{15} | g_{16} |
(-1, -2, -2, -2) | -e_{1}-e_{2} | g_{-16} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-16} | 0 | 0 | 0 | g_{-15} | 0 | 0 | -g_{-14} | g_{-13} | 0 | -g_{-12} | g_{-11} | 0 | -g_{-9} | g_{-8} | -g_{-6} | g_{-5} | -g_{-2} | -2h_{4}-2h_{3}-2h_{2}-h_{1} |
(-1, -1, -2, -2) | -e_{1}-e_{3} | g_{-15} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-16} | 0 | g_{-15} | -g_{-15} | g_{-15} | 0 | g_{-14} | 0 | g_{-13} | 0 | 0 | 0 | g_{-11} | -g_{-10} | 0 | g_{-8} | -g_{-7} | 0 | -g_{-3} | -g_{-1} | -2h_{4}-2h_{3}-h_{2}-h_{1} | -g_{2} |
(0, -1, -2, -2) | -e_{2}-e_{3} | g_{-14} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-16} | 0 | 0 | 0 | g_{-15} | -g_{-14} | 0 | g_{-14} | 0 | 0 | 0 | g_{-12} | 0 | 0 | -g_{-10} | g_{-9} | 0 | -g_{-7} | g_{-6} | 0 | -g_{-3} | 0 | -2h_{4}-2h_{3}-h_{2} | -g_{1} | g_{5} |
(-1, -1, -1, -2) | -e_{1}-e_{4} | g_{-13} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-16} | 0 | 0 | g_{-15} | 0 | 0 | g_{-13} | 0 | -g_{-13} | g_{-13} | g_{-12} | 0 | 0 | g_{-11} | g_{-10} | 0 | 0 | 0 | 0 | -g_{-5} | -g_{-4} | -g_{-1} | -2h_{4}-h_{3}-h_{2}-h_{1} | 0 | -g_{3} | -g_{6} |
(0, -1, -1, -2) | -e_{2}-e_{4} | g_{-12} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-16} | 0 | 0 | 0 | 0 | g_{-14} | 0 | g_{-13} | -g_{-12} | g_{-12} | -g_{-12} | g_{-12} | 0 | g_{-10} | 0 | g_{-9} | 0 | 0 | 0 | 0 | -g_{-4} | -g_{-2} | 0 | -2h_{4}-h_{3}-h_{2} | -g_{1} | -g_{3} | 0 | g_{8} |
(-1, -1, -1, -1) | -e_{1} | g_{-11} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2g_{-16} | 0 | 2g_{-15} | 0 | 0 | 2g_{-13} | 0 | 0 | 0 | g_{-11} | 0 | 0 | 0 | g_{-9} | 0 | 0 | -2g_{-8} | g_{-7} | 0 | -2g_{-5} | g_{-4} | -2g_{-1} | 0 | -2h_{4}-2h_{3}-2h_{2}-2h_{1} | 0 | -g_{4} | 0 | -g_{7} | -g_{9} |
(0, 0, -1, -2) | -e_{3}-e_{4} | g_{-10} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-15} | 0 | -g_{-14} | g_{-13} | 0 | 0 | g_{-12} | 0 | 0 | -g_{-10} | 0 | g_{-10} | 0 | 0 | 0 | g_{-7} | 0 | 0 | -g_{-4} | 0 | 0 | -2h_{4}-h_{3} | 0 | -g_{2} | -g_{5} | g_{6} | g_{8} | 0 |
(0, -1, -1, -1) | -e_{2} | g_{-9} | 0 | 0 | 0 | 0 | 0 | -2g_{-16} | 0 | 0 | 0 | 2g_{-14} | 0 | 0 | 2g_{-12} | 0 | 0 | g_{-11} | -g_{-9} | g_{-9} | 0 | 0 | 0 | g_{-7} | 0 | -2g_{-6} | 0 | g_{-4} | -2g_{-2} | 0 | -2h_{4}-2h_{3}-2h_{2} | 0 | -2g_{1} | -g_{4} | 0 | -g_{7} | 0 | g_{11} |
(-1, -1, -1, 0) | -e_{1}+e_{4} | g_{-8} | 0 | 0 | 0 | 0 | g_{-16} | 0 | g_{-15} | 0 | 0 | 0 | 0 | 0 | -g_{-11} | 0 | 0 | 0 | g_{-8} | 0 | g_{-8} | -g_{-8} | g_{-6} | 0 | -g_{-5} | 0 | g_{-3} | -g_{-1} | 0 | -h_{3}-h_{2}-h_{1} | 0 | 0 | g_{4} | 0 | 0 | 0 | -g_{10} | -g_{12} |
(0, 0, -1, -1) | -e_{3} | g_{-7} | 0 | 0 | 0 | 0 | 0 | -2g_{-15} | 0 | -2g_{-14} | 0 | 0 | 0 | g_{-11} | 2g_{-10} | 0 | g_{-9} | 0 | 0 | -g_{-7} | g_{-7} | 0 | 0 | 0 | g_{-4} | -2g_{-3} | 0 | 0 | -2h_{4}-2h_{3} | 0 | -2g_{2} | -g_{4} | -2g_{5} | 0 | 0 | g_{9} | g_{11} | 0 |
(0, -1, -1, 0) | -e_{2}+e_{4} | g_{-6} | 0 | 0 | 0 | -g_{-16} | 0 | 0 | g_{-14} | 0 | 0 | 0 | 0 | 0 | -g_{-9} | 0 | 0 | g_{-8} | -g_{-6} | g_{-6} | g_{-6} | -g_{-6} | 0 | g_{-3} | -g_{-2} | 0 | 0 | -h_{3}-h_{2} | 0 | -g_{1} | g_{4} | 0 | 0 | 0 | 0 | -g_{10} | 0 | g_{13} |
(-1, -1, 0, 0) | -e_{1}+e_{3} | g_{-5} | 0 | 0 | g_{-16} | 0 | 0 | 0 | -g_{-13} | 0 | 0 | -g_{-11} | 0 | 0 | 0 | -g_{-8} | 0 | 0 | g_{-5} | g_{-5} | -g_{-5} | 0 | g_{-2} | -g_{-1} | 0 | 0 | -h_{2}-h_{1} | 0 | 0 | g_{3} | 0 | 0 | g_{7} | 0 | g_{10} | 0 | 0 | -g_{14} |
(0, 0, 0, -1) | -e_{4} | g_{-4} | 0 | 0 | 0 | 0 | 0 | -2g_{-13} | 0 | -2g_{-12} | g_{-11} | -2g_{-10} | g_{-9} | 0 | 0 | g_{-7} | 0 | 0 | 0 | 0 | -g_{-4} | g_{-4} | 0 | 0 | 0 | -2h_{4} | 0 | 0 | -2g_{3} | 0 | -2g_{6} | g_{7} | -2g_{8} | g_{9} | g_{11} | 0 | 0 | 0 |
(0, 0, -1, 0) | -e_{3}+e_{4} | g_{-3} | 0 | 0 | 0 | -g_{-15} | -g_{-14} | 0 | 0 | 0 | 0 | 0 | 0 | g_{-8} | -g_{-7} | 0 | g_{-6} | 0 | 0 | -g_{-3} | 2g_{-3} | -g_{-3} | 0 | 0 | -h_{3} | 0 | 0 | -g_{2} | g_{4} | -g_{5} | 0 | 0 | 0 | 0 | 0 | g_{12} | g_{13} | 0 |
(0, -1, 0, 0) | -e_{2}+e_{3} | g_{-2} | 0 | -g_{-16} | 0 | 0 | 0 | 0 | -g_{-12} | 0 | 0 | -g_{-9} | 0 | 0 | 0 | -g_{-6} | 0 | g_{-5} | -g_{-2} | 2g_{-2} | -g_{-2} | 0 | 0 | -h_{2} | 0 | 0 | -g_{1} | g_{3} | 0 | 0 | g_{7} | 0 | 0 | g_{10} | 0 | 0 | 0 | g_{15} |
(-1, 0, 0, 0) | -e_{1}+e_{2} | g_{-1} | 0 | 0 | -g_{-15} | 0 | -g_{-13} | 0 | 0 | -g_{-11} | 0 | 0 | -g_{-8} | 0 | 0 | 0 | -g_{-5} | 0 | 2g_{-1} | -g_{-1} | 0 | 0 | -h_{1} | 0 | 0 | 0 | g_{2} | 0 | 0 | g_{6} | 0 | 0 | g_{9} | 0 | g_{12} | 0 | g_{14} | 0 |
(0, 0, 0, 0) | 0 | h_{1} | 0 | -g_{-15} | g_{-14} | -g_{-13} | g_{-12} | -g_{-11} | 0 | g_{-9} | -g_{-8} | 0 | g_{-6} | -g_{-5} | 0 | 0 | g_{-2} | -2g_{-1} | 0 | 0 | 0 | 0 | 2g_{1} | -g_{2} | 0 | 0 | g_{5} | -g_{6} | 0 | g_{8} | -g_{9} | 0 | g_{11} | -g_{12} | g_{13} | -g_{14} | g_{15} | 0 |
(0, 0, 0, 0) | 0 | h_{2} | -g_{-16} | g_{-15} | 0 | 0 | -g_{-12} | 0 | g_{-10} | -g_{-9} | 0 | g_{-7} | -g_{-6} | -g_{-5} | 0 | g_{-3} | -2g_{-2} | g_{-1} | 0 | 0 | 0 | 0 | -g_{1} | 2g_{2} | -g_{3} | 0 | g_{5} | g_{6} | -g_{7} | 0 | g_{9} | -g_{10} | 0 | g_{12} | 0 | 0 | -g_{15} | g_{16} |
(0, 0, 0, 0) | 0 | h_{3} | 0 | -g_{-15} | -g_{-14} | g_{-13} | g_{-12} | 0 | 0 | 0 | -g_{-8} | -g_{-7} | -g_{-6} | g_{-5} | g_{-4} | -2g_{-3} | g_{-2} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{2} | 2g_{3} | -g_{4} | -g_{5} | g_{6} | g_{7} | g_{8} | 0 | 0 | 0 | -g_{12} | -g_{13} | g_{14} | g_{15} | 0 |
(0, 0, 0, 0) | 0 | h_{4} | 0 | 0 | 0 | -g_{-13} | -g_{-12} | 0 | -g_{-10} | 0 | g_{-8} | 0 | g_{-6} | 0 | -g_{-4} | g_{-3} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{3} | g_{4} | 0 | -g_{6} | 0 | -g_{8} | 0 | g_{10} | 0 | g_{12} | g_{13} | 0 | 0 | 0 |
(1, 0, 0, 0) | e_{1}-e_{2} | g_{1} | 0 | -g_{-14} | 0 | -g_{-12} | 0 | -g_{-9} | 0 | 0 | -g_{-6} | 0 | 0 | -g_{-2} | 0 | 0 | 0 | h_{1} | -2g_{1} | g_{1} | 0 | 0 | 0 | g_{5} | 0 | 0 | 0 | g_{8} | 0 | 0 | g_{11} | 0 | 0 | g_{13} | 0 | g_{15} | 0 | 0 |
(0, 1, 0, 0) | e_{2}-e_{3} | g_{2} | -g_{-15} | 0 | 0 | 0 | -g_{-10} | 0 | 0 | -g_{-7} | 0 | 0 | -g_{-3} | g_{-1} | 0 | 0 | h_{2} | 0 | g_{2} | -2g_{2} | g_{2} | 0 | -g_{5} | 0 | g_{6} | 0 | 0 | 0 | g_{9} | 0 | 0 | g_{12} | 0 | 0 | 0 | 0 | g_{16} | 0 |
(0, 0, 1, 0) | e_{3}-e_{4} | g_{3} | 0 | -g_{-13} | -g_{-12} | 0 | 0 | 0 | 0 | 0 | g_{-5} | -g_{-4} | g_{-2} | 0 | 0 | h_{3} | 0 | 0 | 0 | g_{3} | -2g_{3} | g_{3} | 0 | -g_{6} | 0 | g_{7} | -g_{8} | 0 | 0 | 0 | 0 | 0 | 0 | g_{14} | g_{15} | 0 | 0 | 0 |
(0, 0, 0, 1) | e_{4} | g_{4} | 0 | 0 | 0 | -g_{-11} | -g_{-9} | 2g_{-8} | -g_{-7} | 2g_{-6} | 0 | 2g_{-3} | 0 | 0 | 2h_{4} | 0 | 0 | 0 | 0 | 0 | g_{4} | -g_{4} | 0 | 0 | -g_{7} | 0 | 0 | -g_{9} | 2g_{10} | -g_{11} | 2g_{12} | 0 | 2g_{13} | 0 | 0 | 0 | 0 | 0 |
(1, 1, 0, 0) | e_{1}-e_{3} | g_{5} | g_{-14} | 0 | 0 | -g_{-10} | 0 | -g_{-7} | 0 | 0 | -g_{-3} | 0 | 0 | h_{2}+h_{1} | 0 | 0 | g_{1} | -g_{2} | -g_{5} | -g_{5} | g_{5} | 0 | 0 | 0 | g_{8} | 0 | 0 | 0 | g_{11} | 0 | 0 | g_{13} | 0 | 0 | 0 | -g_{16} | 0 | 0 |
(0, 1, 1, 0) | e_{2}-e_{4} | g_{6} | -g_{-13} | 0 | g_{-10} | 0 | 0 | 0 | 0 | -g_{-4} | g_{-1} | 0 | h_{3}+h_{2} | 0 | 0 | g_{2} | -g_{3} | 0 | g_{6} | -g_{6} | -g_{6} | g_{6} | -g_{8} | 0 | 0 | g_{9} | 0 | 0 | 0 | 0 | 0 | -g_{14} | 0 | 0 | g_{16} | 0 | 0 | 0 |
(0, 0, 1, 1) | e_{3} | g_{7} | 0 | -g_{-11} | -g_{-9} | 0 | 0 | 2g_{-5} | g_{-4} | 2g_{-2} | 0 | 2h_{4}+2h_{3} | 0 | 0 | 2g_{3} | -g_{4} | 0 | 0 | 0 | g_{7} | -g_{7} | 0 | 0 | -g_{9} | 0 | -2g_{10} | -g_{11} | 0 | 0 | 0 | 2g_{14} | 0 | 2g_{15} | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 0) | e_{1}-e_{4} | g_{8} | g_{-12} | g_{-10} | 0 | 0 | 0 | -g_{-4} | 0 | 0 | h_{3}+h_{2}+h_{1} | 0 | g_{1} | -g_{3} | 0 | g_{5} | 0 | -g_{6} | -g_{8} | 0 | -g_{8} | g_{8} | 0 | 0 | 0 | g_{11} | 0 | 0 | 0 | 0 | 0 | -g_{15} | 0 | -g_{16} | 0 | 0 | 0 | 0 |
(0, 1, 1, 1) | e_{2} | g_{9} | -g_{-11} | 0 | g_{-7} | 0 | g_{-4} | 2g_{-1} | 0 | 2h_{4}+2h_{3}+2h_{2} | 0 | 2g_{2} | -g_{4} | 0 | 2g_{6} | 0 | -g_{7} | 0 | g_{9} | -g_{9} | 0 | 0 | -g_{11} | 0 | 0 | -2g_{12} | 0 | 0 | -2g_{14} | 0 | 0 | 0 | 2g_{16} | 0 | 0 | 0 | 0 | 0 |
(0, 0, 1, 2) | e_{3}+e_{4} | g_{10} | 0 | -g_{-8} | -g_{-6} | g_{-5} | g_{-2} | 0 | 2h_{4}+h_{3} | 0 | 0 | g_{4} | 0 | 0 | -g_{7} | 0 | 0 | 0 | 0 | g_{10} | 0 | -g_{10} | 0 | -g_{12} | 0 | 0 | -g_{13} | g_{14} | 0 | g_{15} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 1) | e_{1} | g_{11} | g_{-9} | g_{-7} | 0 | g_{-4} | 0 | 2h_{4}+2h_{3}+2h_{2}+2h_{1} | 0 | 2g_{1} | -g_{4} | 2g_{5} | 0 | -g_{7} | 2g_{8} | 0 | 0 | -g_{9} | -g_{11} | 0 | 0 | 0 | 0 | 0 | 0 | -2g_{13} | 0 | 0 | -2g_{15} | 0 | -2g_{16} | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 1, 1, 2) | e_{2}+e_{4} | g_{12} | -g_{-8} | 0 | g_{-3} | g_{-1} | 2h_{4}+h_{3}+h_{2} | 0 | g_{2} | g_{4} | 0 | 0 | 0 | 0 | -g_{9} | 0 | -g_{10} | 0 | g_{12} | -g_{12} | g_{12} | -g_{12} | -g_{13} | 0 | -g_{14} | 0 | 0 | 0 | 0 | g_{16} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 2) | e_{1}+e_{4} | g_{13} | g_{-6} | g_{-3} | 0 | 2h_{4}+h_{3}+h_{2}+h_{1} | g_{1} | g_{4} | g_{5} | 0 | 0 | 0 | 0 | -g_{10} | -g_{11} | 0 | 0 | -g_{12} | -g_{13} | 0 | g_{13} | -g_{13} | 0 | 0 | -g_{15} | 0 | 0 | -g_{16} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 1, 2, 2) | e_{2}+e_{3} | g_{14} | -g_{-5} | g_{-1} | 2h_{4}+2h_{3}+h_{2} | 0 | g_{3} | 0 | -g_{6} | g_{7} | 0 | -g_{9} | g_{10} | 0 | 0 | -g_{12} | 0 | 0 | g_{14} | 0 | -g_{14} | 0 | -g_{15} | 0 | 0 | 0 | g_{16} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 2, 2) | e_{1}+e_{3} | g_{15} | g_{-2} | 2h_{4}+2h_{3}+h_{2}+h_{1} | g_{1} | g_{3} | 0 | g_{7} | -g_{8} | 0 | g_{10} | -g_{11} | 0 | 0 | 0 | -g_{13} | 0 | -g_{14} | -g_{15} | g_{15} | -g_{15} | 0 | 0 | -g_{16} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 2, 2, 2) | e_{1}+e_{2} | g_{16} | 2h_{4}+2h_{3}+2h_{2}+h_{1} | g_{2} | -g_{5} | g_{6} | -g_{8} | g_{9} | 0 | -g_{11} | g_{12} | 0 | -g_{13} | g_{14} | 0 | 0 | -g_{15} | 0 | 0 | -g_{16} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 1) | = | \(\displaystyle \varepsilon_{1}\) |
(1, 2, 2, 2) | = | \(\displaystyle \varepsilon_{1}+\varepsilon_{2}\) |
(1, 2, 3, 3) | = | \(\displaystyle \varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}\) |
(1/2, 1, 3/2, 2) | = | \(\displaystyle 1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}\) |
(1, 0, 0, 0) | = | \(\displaystyle \varepsilon_{1}-\varepsilon_{2}\) |
(0, 1, 0, 0) | = | \(\displaystyle \varepsilon_{2}-\varepsilon_{3}\) |
(0, 0, 1, 0) | = | \(\displaystyle \varepsilon_{3}-\varepsilon_{4}\) |
(0, 0, 0, 1) | = | \(\displaystyle \varepsilon_{4}\) |